Find more details about my publications at:



Csillik, O., Reiche, J., De Sy, V., Araza, A., Herold, M., 2022Rapid remote monitoring reveals spatial and temporal hotspots of carbon loss in Africa’s rainforestsCommunications Earth & Environment, 3(1), 1-8.

Belgiu, M., Bijker, W., Csillik, O., Stein, A., 2021, Phenology-based sample generation for supervised crop type classification. International Journal of Applied Earth Observation and Geoinformation, 95, 102264

Csillik, O.; Asner, G.P., 2020, Near-real time aboveground carbon emissions in Peru. PLoS ONE, 15(11), e0241418.

Csillik, O.; Kumar, P.; Asner, G.P., 2020, Challenges in estimating tropical forest canopy height from Planet Dove imagery. Remote Sensing, 12, 1160.

Csillik, O.; Asner, G.P., 2020, Aboveground carbon emissions from gold mining in the Peruvian Amazon. Environmental Research Letters, 15, 014006.

Csillik, O.; Kumar, P.; Mascaro, J.; O’Shea, T.; Asner, G.P., 2019, Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Scientific Reports, 9, 17831.

Csillik, O.; Belgiu, M.; Asner, G.P.; Kelly, M., 2019, Object-based time-constrained dynamic time warping classification of crops using Sentinel-2. Remote Sensing, 11, 1257.

Csillik, O., Cherbini, J., Johnson, R., Lyons, A., Kelly, M., 2018, Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks. Drones, 2(4), 39.

de Castro, A.; Torres-Sánchez, J.; Peña, J.; Jiménez-Brenes, F.; Csillik, O.; López-Granados, F., 2018, An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sensing, 10, 285.

Belgiu, M., Csillik, O., 2018, Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment, 204, 509-523.

Csillik, O., 2017, Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels. Remote Sensing, 9(3), 243.

Pârvulescu, L., Zaharia, C., Groza, M.I., Csillik, O., Satmari, A., and Drăguţ, L., 2016, Flash-flood potential: a proxy for crayfish habitat stability. Ecohydrology, 9(8), 1507-1516.

Csillik, O., Evans, I.S., Drăguț, L., 2015, Transformation (normalization) of slope gradient and surface curvatures, automated for statistical analyses from DEMs. Geomorphology, 232, 65-77.

Drăguț, L., Csillik, O., Tiede, D., Eisank, C., 2014, Automated parametrization for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 119-127.


Pinagé, E.R., Keller, M., Longo, M., Peck, C., Duffy, P., Csillik, O., 2022, Reference data, predictors, and probability grids for forest degradation classes in three sites in the Brazilian Amazon. United States.

Conference proceedings (selected)

Csillik O., Keller M., Longo M., Bonal D., Burban B, Chave J., Coomes D.A., Derroire G, Feldpausch T.R, Görgens E.B., Jackson T., Ometto J.P., Villalba Valdivia M.I., Vincent G., 2022, Amazon forest structural diversity estimated using field inventory plots, airborne lidar and GEDI spaceborne lidar, AGU Fall Meeting 2022, Chicago, USA

Keller, M., Csillik, O., Ferraz, A., Pinagé, E.R., Longo, M., Duffy, P., Saatchi, S., Ometto, J.P., 2022, Forest degradation rates and carbon changes in the Brazilian Arc of Deforestation using repeated airborne lidar, AGU Fall Meeting 2022, Chicago, USA

Pinagé, E.R., Keller, M., Peck, C., Longo, M., Duffy, P., Csillik, O., 2022, Detection of forest degradation by selective logging and fires in the Brazilian Amazon Arc of Deforestation based on Sentinel-2 data, AGU Fall Meeting 2022, Chicago, USA

Peck, C., Duffy, P., Pinagé, E.R., Csillik, O., Longo, M., Keller, M., 2022, Classifying forest degradation using within-pixel lidar return distributions, AGU Fall Meeting 2022, Chicago, USA

Mohan, M., Pastorello, G.Z., Feng, Y., Longo, M., Meng, L., Keller, M., Ferraz, A., Csillik, O., Chambers, J.Q., 2022, Analyzing the influence of climate and environmental factors on growth rates of secondary tropical forests using NASA GEDI spaceborne LiDAR, AGU Fall Meeting 2022, Chicago, USA

Longo, M., Keller, M., Saatchi, S., Csillik, O., Pinagé, E.R., Bowman, K., Moorcroft, P., Xu, X., Konings, A., Ferraz, A., Ordway, E., Larson, E., Xu, L., Ometto, J.P., Kueppers, L., 2022, Impacts of structural diversity of Amazon forests on carbon and water cycles: an integrated remote-sensing and model approach, 4th Carbon from Space Workshop, Frascati, Italy

Longo, M., Keller, M., Saatchi, S., Xu, X., Moorcroft, P., Konings, A., Ometto, J.P., Ferraz, A., Csillik, O., Ordway, E., Larson, E., Kueppers, L., 2022, Linking field observations, lidar, and ecosystem models to understand the impact of Amazon forest degradation on water and carbon cycles, 58th Annual Meeting of the Association for Tropical Biology and Conservation – ATBC 2022, Cartagena, Colombia

Reiche, J., Mullissa, A., Slagter, B., Csillik, O., Gou, Y., Balling, J., Welsink, A-J., van der Woude, S., Vollrath, A., Weisse, M., Herold, M., 2022, RADD forest disturbance alerts – updates and next steps, ForestSAT 2022, Berlin, Germany

Csillik, O., De Sy, V., Herold, M., Verchot, L.V., 2020, The potential of Sentinel-2 and -1 for upscaling GEDI LiDAR sampling of vegetation height at global and ecosystem-level, AGU Fall Meeting 2020, USA (online)

Csillik, O., Drăguț, L., 2018, Towards a global geomorphometric atlas using Google Earth Engine, Proceedings of Geomorphometry 2018 conference, Boulder, Colorado, USA.

Csillik, O., Belgiu, M., Kelly, M., 2018, Automated object-based satellite image time series classification using dynamic time warping. In GEOBIA 2018 Conference, Montpellier, France.

Lang, S., Csillik, O., 2017, ETRS grid-constrained superpixel generation in urban areas using multi-sensor very high resolution Imagery. GI_Forum 2017, 1, 244-252.

Csillik, O., Belgiu, M., 2017, Cropland mapping from Sentinel-2 time series data using object-based image analysis. In AGILE 2017 Conference, Wageningen, The Netherlands.

Csillik, O., Lang, S., 2016, Improving the speed of multiresolution segmentation using SLIC superpixels, GEOBIA 2016, Enschede, The Netherlands.

Csillik, O., 2016, Superpixels: the end of pixels in OBIA. A comparison of state-of-the-art superpixel methods for remote sensing data, GEOBIA 2016, Enschede, The Netherlands.

Csillik, O., Lang, S., Tiede, D., 2016, Local spatial autocorrelation of very high resolution imagery – Causes and effects on image segmentation, 36th EARSeL Symposium, Bonn, Germany.

Csillik, O., Evans, I.S., Drăguț, L., 2015, Automated transformation of slope and surface curvatures to avoid long tails in frequency distributions, Proc. of Geomorphometry 2015, Poznan, Poland.

Csillik, O., Drăguț, L., 2014, Improving image segmentation with automated refinement of objects, GEOBIA 2014 Conference, Thessaloniki, Greece.

Drăguț, L., Csillik, O., Eisank, C., Tiede, D., 2014, Automated multiresolution segmentation on multiple layers, GEOBIA 2014 Conference, Thessaloniki, Greece.

Drăguț, L., Csillik, O., Minár, J., Evans, I.S., 2013, Land surface segmentation to delineate elementary forms from Digital Elevation Models, Proc. of Geomorphometry 2013, Nanjing, China.

Drăguț, L., Csillik, O., Ardelean, F., Dornik, A., 2012, Partitioning a DEM into fundamental surface elements with land-surface segmentation, IAG/AIG International Workshop, Salerno, Italy.

Drăguț, L., Tiede, D., Eisank, C., Csillik, O., 2012, Objective objectification with multiresolution segmentation, GEOBIA Workshop – GIScience 2012, Columbus, Ohio, USA.

Drăguț, L., Csillik, O., Dornik, A., Ardelean, F., Zisu, I., 2012, Fundamental surface elements on digital elevation models, The Forum Carpaticum 2012, Stará Lesná, Slovakia.